EconPapers    
Economics at your fingertips  
 

Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation

Mladen Čičić and Karl Henrik Johansson

Transportation Research Part B: Methodological, 2022, vol. 166, issue C, 212-236

Abstract: Connected and Autonomous Vehicles is a technology that will be disruptive for all layers of traffic control. The Lagrangian, in-the-flow nature of their operation offers untapped new potentials for sensing and actuation, but also presents new fundamental challenges. In order to use these vehicles for traffic state reconstruction and control, we need suitable traffic models, which should be computationally efficient and able to represent complex traffic phenomena. To this end, we propose the Front-tracking Transition System Model, a cell-free modelling approach that can incorporate Lagrangian measurements, and has a structure that yields itself to on-line model learning and control. The model is formulated as a transition system, and based on the front-tracking method for finding entropy solutions to the Lighthill–Whitham–Richards model. We characterize the solution of this model and show that it corresponds to the solution of the underlying PDE traffic model. Algorithms for traffic state reconstruction and model learning are proposed, exploiting the model structure. The model is then used to design a prediction-based control law for stop-and-go wave dissipation using randomly arriving Connected and Autonomous Vehicles. The proposed control framework is able to estimate the traffic state and model, adapt to changes in the traffic dynamics, and achieve a reduction in vehicles’ Total Time Spent.

Keywords: Front-tracking; Transition system; Moving bottlenecks; Stop-and-go wave dissipation; Traffic state reconstruction and model learning; Prediction-based traffic control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522001679
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:166:y:2022:i:c:p:212-236

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2022.10.008

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:166:y:2022:i:c:p:212-236