Stochastic modeling and adaptive forecasting for parking space availability with drivers’ time-varying arrival/departure behavior
Baibing Li
Transportation Research Part B: Methodological, 2022, vol. 166, issue C, 313-332
Abstract:
Parking space availability is valuable information to travelers. This paper aims at modeling drivers’ behavioral changes in arrivals/departures over time of day and developing an adaptive forecasting approach for parking space availability. We propose a stochastic model that consists of two inter-connected Markov processes. First, the lower level of the model focuses on the parking behavior within a short time period, based on conventional M/M/C/C queueing theory with the assumption of fixed arrival and parking rates. Next, to account for the behavioral changes in drivers’ arrivals/departures over a longer time period (e.g. time of day), we incorporate a Markov regime switching process to describe the regime switching mechanism of the arrival/departure behavior. The integrated model leads to an adaptive forecasting formula with time-varying forecasting coefficients adaptively adjusted based on the arrival/departure regimes. We investigate two real traffic applications to illustrate the developed stochastic model and to test the performance of the adaptive forecasting method using out-of-sample data.
Keywords: Adaptive forecasting; Markov switching process; Parking space availability; Timing-varying arrival/departure behavior (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522001801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:166:y:2022:i:c:p:313-332
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2022.10.014
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().