Robust and resilient equilibrium routing mechanism for traffic congestion mitigation built upon correlated equilibrium and distributed optimization
Yuqiang Ning and
Lili Du
Transportation Research Part B: Methodological, 2023, vol. 168, issue C, 170-205
Abstract:
With the rapid development of wireless communication, mobile computing, and GPS technologies, drivers’ route decisions nowadays rely more on navigation services, such as Google or Waze. However, these navigation services don't always come with improved traffic conditions. Individual drivers often make independent and selfish route decisions that are not systematically favorable and thus often result in severe congestions. This study aims to alleviate such problems by exploiting the information gaps between individuals and the central planner (CP). Specifically, we develop a correlated equilibrium routing mechanism (CeRM) for the CP, which drives a group of vehicles’ route choices to an equilibrium with a systematically optimal traffic condition while still satisfying individuals’ selfish nature. Participating drivers would only be better off by following the suggested routing guidance than navigating on their best responses to real-time traffic information. The CeRM is modeled as a nonconvex and nonlinear program involving a large-scale of users. A distributed Augmented Lagrangian algorithm (D-AL) is developed to efficiently solve the CeRM to provide online real-time navigation service, taking advantage of the on-board computation resources of individual vehicles. Considering the D-AL relies on the wireless communications between vehicles and the CP, we proved the convergence robustness of the D-AL against random communication failures and derived the convergence rate upper bound as a function of the communication failure probability. It is noticed that the convergence rate of the D-AL degrades dramatically as the communication failure probability increases, which hampers the applicability of implementing the CeRM in practice. To improve the solution algorithm's resilience in the computation performance, we further designed and proved an acceleration scheme aided D-AL (aD-AL) to expedite the convergence rate under the high likelihood of communication failures. Numerical experiments conducted on the Sioux Falls city network confirmed the D-AL's convergence properties, robustness against random communication failures, and the resilience of the aD-AL to solve the CeRM. The experiments also show that the CeRM results in better system performance (have less system cost) compared with the existing Independent Routing (IR) mechanism and user-oriented Equilibrium Routing (uoER) mechanism.
Keywords: Equilibrium routing mechanism; Correlated equilibrium; Distributed algorithm; Robust and Resilient algorithm; Online traffic routing; Congestion mitigation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522002089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:168:y:2023:i:c:p:170-205
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2022.12.006
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().