Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems
Haoning Xi,
Wei Liu,
S. Travis Waller,
David Hensher,
Philip Kilby and
David Rey
Transportation Research Part B: Methodological, 2023, vol. 170, issue C, 119-147
Abstract:
In the context of Mobility-as-a-Service (MaaS), the transportation sector has been evolving towards user-centric business models, which put the user experience and tailored mobility solutions at the center of the offer. The emerging concept of MaaS emphasizes that users value experience-relevant factors, e.g., service time, inconvenience cost, and travel delay, over segmented travel modes choices. This study proposes an auction-based mechanism and tractable optimization models for the demand-side management of MaaS systems wherein users’ trip requests are represented as mode-agnostic mobility resources. Users’ requests arrive dynamically in the MaaS system and users compete for mobility resources by bidding for mobility services based on their willingness to pay and experience-relevant preferences. We take the perspective of a MaaS platform regulator who aims to maximize social welfare by optimally allocating mobility resources to users in real-time. The MaaS regulator first decides whether to offer each user a MaaS bundle and identifies the optimal allocation of mobility resources for the selected users. Users have the possibility to accept or reject offered MaaS bundles by comparing the associated utility obtained from MaaS with a reserve utility obtained from other travel options. We introduce mixed-integer programming formulations for this online mobility resource allocation problem. We show that the proposed MaaS mechanism is incentive-compatible, individually rational, budget balanced, and computationally efficient. We propose a polynomial-time online algorithm and derive its competitive ratio relative to an offline algorithm. We also explore rolling horizon configurations with varying look-ahead policies to implement the proposed mechanism. Extensive numerical simulations conducted on large-scale instances generated from realistic mobility data highlight the benefits of the proposed mechanism.
Keywords: Auctions; Incentive-compatibility; Online resource allocation; Mobility-as-a-Service (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261523000243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:170:y:2023:i:c:p:119-147
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2023.02.011
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().