Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design
Hanyu Zhang and
Lili Du
Transportation Research Part B: Methodological, 2023, vol. 172, issue C, 174-198
Abstract:
Inspired by connected and autonomous vehicle (CAV) technologies, extensive studies have developed open-loop vehicle-level trajectory planning or speed advisory to promote eco-driving at traffic intersections. But few studies work on platoon-level closed-loop trajectory control, which can better sustain stream traffic smoothness and efficiency. Motivated by this research gap, this study developed a system optimal platoon-centered control for eco-driving (PCC-eDriving), which can guide a platoon mixed with connected and autonomous vehicles (CAVs) and human-driven vehicles (HDVs) to smoothly approach, split as needed, and then sequentially pass signalized intersections, while reducing or even avoiding sharp deceleration and red idling. The effort is separated to Part I and Part II to prevent a lengthy article. Specifically, Part I of this study modeled the PCC-eDriving as a hybrid Model Predictive Control (MPC) system. It involves three MPC controllers for platoon trajectory control and a mixed-integer nonlinear program (MINLP) for optimal splitting decisions. Each MPC controller is integrated with robust vehicle dynamics and an online adaptive curve learning algorithm to factor control and vehicle driving uncertainties. An active-set-based optimal condition decomposition algorithm (AS-OCD) was developed to efficiently solve the MPC controllers' large-scale optimizers in a distributed manner. The numerical experiments built upon the field and simulated data indicated that the PCC-eDriving could significantly improve traffic smoothness and efficiency while reducing energy consumption and emission at urban signalized intersections. Part II will analyze and prove the sequential feasibility and the Input-to-State stability of the hybrid MPC system, as well as the convergence of the AS-OCD solution approach to theoretically sustain the performance of the hybrid MPC system.
Keywords: Connected and autonomous vehicle; Platoon-centered control; Eco-driving strategy; Model predictive control; Hybrid MPC system; Distributed optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S019126152300019X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:172:y:2023:i:c:p:174-198
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2023.02.006
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().