EconPapers    
Economics at your fingertips  
 

Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis

Hanyu Zhang and Lili Du

Transportation Research Part B: Methodological, 2023, vol. 172, issue C, 199-216

Abstract: Extensive studies developed eco-driving strategies to smooth traffic and reduce energy consumption and emission at signalized intersections. Part I (Zhang and Du, 2022) of this study developed a novel platoon-centered control for eco-driving (PCC-eDriving), considering a mixed flow involving Connected and Autonomous Vehicles (CAVs) and Human-Driven Vehicles (HDVs). This PCC-eDriving is mathematically implemented by a hybrid Model Predictive Control (MPC) system and solved by an active-set based optimal condition decomposition algorithm (AS-OCD). It generates discrete control laws for a platoon to approach, split as sub-platoons as needed, and then pass the intersections smoothly and efficiently. Though the numerical experiments validated the effectiveness, the theoretical properties of the hybrid MPC system and the solution algorithms were not investigated. Part II of this study thus focused on these theoretical analyses. Mainly, we first analyzed and proved the MPC sequential feasibility and hybrid system switching feasibility to guarantee the control continuity of the hybrid MPC system. Next, we factored CAV control uncertainties and proved the Input-to-state stability of the robust MPC controller. These proofs theoretically ensured the effectiveness and robustness of the hybrid MPC system. Last, we proved the solution optimality and convergence of the AS-OCD algorithm. It confirmed that the AS-OCD algorithm could find the global optimal solutions for the MPC optimizers with a linear convergence rate.

Keywords: Connected and autonomous vehicle; Platoon-centered control; Eco-driving strategy; Model predictive control; Hybrid MPC system; Sequential feasibility; Switching Feasibility; Asymptotic stability; Input-to-State stability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261523000528
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:172:y:2023:i:c:p:199-216

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2023.03.008

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:172:y:2023:i:c:p:199-216