A data-driven optimization approach to improving maritime transport efficiency
Ran Yan,
Yan Liu and
Shuaian Wang
Transportation Research Part B: Methodological, 2024, vol. 180, issue C
Abstract:
Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain.
Keywords: Maritime transport; Data-driven optimization; Bi-objective optimization model; Predictive analytics; Threshold optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524000110
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2024.102887
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().