EconPapers    
Economics at your fingertips  
 

Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem

Chong Wang, Kaiyuan Liu, Canrong Zhang and Lixin Miao

Transportation Research Part B: Methodological, 2024, vol. 182, issue C

Abstract: In this paper, we are the first to propose a distributionally robust chance-constrained (DRCC) optimization model for the integrated berth allocation and quay crane assignment problem (BACAP) in container terminals. In contrast to the classical deterministic BACAP model, we consider the arrival time to be uncertain due to the frequent arrival delays in ports. We then impose a chance constraint that the service time must start after the uncertain arrival time with a probability of at least 1−ϵ, where 1−ϵ represents the target service level in container terminals (ϵ represents the target risk tolerance of the port manager). Under the moment-based ambiguity set, we reformulate the DRCC model into a mixed integer semi-definite programming (MISDP) model. Additionally, we develop an efficient decomposition branch-and-bound algorithm to solve the MISDP model and obtain the exact solution. Fortunately, a special case of the DRCC model arises when the mean and covariance utilized in the ambiguity set are precise, allowing for the transformation of the DRCC model into a mixed integer programming (MIP) model. This conversion significantly reduces the complexity of the problem. Impressively, the solving time of the MISDP model with the decomposition branch-and-bound algorithm is comparable to that of the transformed MIP model. The numerical results show that our model can achieve a schedule with high service at low cost. Meanwhile, we have made an intriguing discovery that the correlation between the target risk tolerance and the actual service level can be depicted as a staircase function regardless of the datasets. This finding offers crucial insights for port management, enabling them to strike a balance between the cost and actual service level by determining an appropriate target service level.

Keywords: Berth and quay crane; Distributionally robust optimization; Chance constraint (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S019126152400047X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:182:y:2024:i:c:s019126152400047x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2024.102923

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:182:y:2024:i:c:s019126152400047x