EconPapers    
Economics at your fingertips  
 

Primal decomposition for berth planning under uncertainty

Lu Zhen, Xueting He, Dan Zhuge and Shuaian Wang

Transportation Research Part B: Methodological, 2024, vol. 183, issue C

Abstract: Berth planning is an important decision in port operations. The uncertainties in maritime transportation may result in uncertain ship arrival and service times at a port for every week of a planning horizon. In a realistic maritime transportation environment, the uncertain information on ship arrival and service times for a week become known only after a decision is made in the previous week. This study proposes a multi-stage stochastic integer programming (SIP) model for a tactical-level port berth planning problem under uncertainty, which tries to make fixed baseline berthing plans to fit shipping liners’ preferred time slots and reduce their expected delay costs with actual ship arrival and service times for all the weeks of a planning horizon. We propose an original primal decomposition algorithm to solve the multi-stage SIP model. The proposed algorithm passes primal columns of subsequent-stage problems to the first-stage problem to approximate the subsequent-stage decision-making. This algorithm can be generalized to a variety of similarly structured multi-stage SIP models. Using actual berthing data from Xiamen port, we conduct experiments to validate the efficiency of our primal decomposition algorithm. We also conduct experiments to quantify the benefit of using stochastic programming to model the berth planning, the benefit of modelling the problem as a multi-stage program, the benefit of the scenario reduction method designed in this study, and the algorithmic scalability. The proposed multi-stage SIP model for berth planning as well as the primal decomposition algorithm could be potentially useful for port operators to improve operational efficiency of container terminals in uncertain environments.

Keywords: Maritime transportation; Port operations; Multi-stage stochastic programming; Uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524000535
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000535

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2024.102929

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000535