Network multiscale urban traffic control with mixed traffic flow
Qiangqiang Guo and
Ban, Xuegang (Jeff)
Transportation Research Part B: Methodological, 2024, vol. 185, issue C
Abstract:
Urban traffic control (UTC) is inherently multiscale in both temporal and spatial domains. With the wide deployment of connected and automated vehicles (CAVs), data is increasingly available to help reveal this multiscale nature of UTC and the inter-dynamics among different scales. This paper applies the multiscale UTC framework we proposed earlier and extends it to UTC on a network of traffic signals with a mixed flow of CAVs and human-driven vehicles (HDVs). We adopt distributed control as the basic scheme for network-wide control and use information sharing to achieve cooperation among different intersections. We use CAV information to estimate HDV state and develop a “safety check” technique to control CAVs in the mixed traffic flow. Together, we propose a network-wide UTC framework with mixed traffic flow. To address the computation issue of the model-based multiscale method, we develop an imitation learning (IL) enhanced data-driven method to improve the computation efficiency. Specifically, we use a convolutional neural network (CNN) to represent the policies of the slower-scale signal control problem and use the data aggregation method as the learning framework to improve the policies. This algorithm’s unique feature is that IL policies’ training is based on the optimized results from the model-based multiscale control method. We test the model-based and IL-based methods in simulation, under various traffic scenarios and on multiple networks. We also test the transferability property of the IL-based method by training individual intersection control separately in small networks and applying them to larger networks with various types of intersections.
Keywords: Connected and automated vehicles; Multiscale control; Mixed traffic flow (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524000870
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:185:y:2024:i:c:s0191261524000870
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2024.102963
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().