EconPapers    
Economics at your fingertips  
 

Network macroscopic fundamental diagram-informed graph learning for traffic state imputation

Jiawei Xue, Eunhan Ka, Yiheng Feng and Satish V. Ukkusuri

Transportation Research Part B: Methodological, 2024, vol. 189, issue C

Abstract: Traffic state imputation refers to the estimation of missing values of traffic variables, such as flow rate and traffic density, using available data. It furnishes comprehensive traffic context for various operation tasks such as vehicle routing, and enables us to augment existing datasets (e.g., PeMS, UTD19, Uber Movement) for diverse theoretical and practical investigations. Despite the superior performance achieved by purely data-driven methods, they are subject to two limitations. One limitation is the absence of a traffic engineering-level interpretation in the model architecture, as it fails to elucidate the methodology behind deriving imputation results from a traffic engineering standpoint. The other limitation is the possibility that imputation results may violate traffic flow theories, thereby yielding unreliable outcomes for transportation engineers. In this study, we introduce NMFD-GNN, a physics-informed machine learning method that fuses the network macroscopic fundamental diagram (NMFD) with the graph neural network (GNN), to perform traffic state imputation. Specifically, we construct the graph learning module that captures the spatio-temporal dependency of traffic congestion. Besides, we develop the physics-informed module based on the λ-trapezoidal MFD, which presents a functional form of NMFD and was formulated by transportation researchers in 2020. The primary contribution of NMFD-GNN lies in being the first physics-informed machine learning model specifically designed for real-world traffic networks with multiple roads, while existing studies have primarily focused on individual road corridors. We evaluate the performance of NMFD-GNN by conducting experiments on real-world traffic networks located in Zurich and London, utilizing the UTD19 dataset 11Codes are available at https://github.com/JiaweiXue/NMFD_GNN.. The results indicate that our NMFD-GNN outperforms six baseline models in terms of performance in traffic state imputation.

Keywords: Traffic state imputation; Physics-informed machine learning; Network macroscopic fundamental diagram; Graph neural networks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261524001206
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001206

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2024.102996

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-22
Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001206