Spatial price equilibrium sensitivity analysis
Gary S. Chao and
Terry L. Friesz
Transportation Research Part B: Methodological, 1984, vol. 18, issue 6, 423-440
Abstract:
A direct approach to performing sensitivity analysis for a spatial price equilibrium problem with nonlinear transportation cost, commodity supply and commodity demand functions is presented. The first order derivatives of all decision variables with respect to parameter perturbations are shown to be expressable in a simple from which requires inversion of a matrix whose rank is the number of regions considered. A typical network usually involves several hundred regions and several thousand links; thus, by working with a matrix whose rank depends only on the number of regions rather than the number of links, computer storage is minimized and the necessary matrix inversion is made feasible, enabling us to perform the sensitivity analyses of very large nonlinear equilibrium problems. An example is presented to demonstrate application of the method. The approach taken here is also adaptable to the sensitivity analysis of Wardropian equilibrium problems.
Date: 1984
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0191-2615(85)90010-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:18:y:1984:i:6:p:423-440
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().