Real-time vehicle relocation, personnel dispatch and trip pricing for carsharing systems under supply and demand uncertainties
Mengjie Li,
Haoning Xi,
Chi Xie,
Zuo-Jun Max Shen and
Yifan Hu
Transportation Research Part B: Methodological, 2025, vol. 193, issue C
Abstract:
In one-way carsharing systems, striking a balance between vehicle supply and user demand across stations poses considerable operational challenges. While existing research on vehicle relocation, personnel dispatch, and trip pricing have shown effectiveness, they often struggle with the complexities of fluctuating and unpredictable demand and supply patterns in uncertain environments. This paper introduces a real-time relocation-dispatch-pricing (RDP) problem, within an evolving time-state-extended transportation network, to optimize vehicle relocation, personnel dispatch, and trip pricing in carsharing systems considering both demand and supply uncertainties. Furthermore, recognizing the critical role of future insights in real-time decision making and strategic adaptability, we propose a novel two-stage anticipatory-decision rolling horizon (ADRH) optimization framework where the first stage solves a real-time RDP problem to make actionable decisions with future supply and demand distributions, while also incorporating anticipatory guidance from the second stage. The proposed RDP problem under the ADRH framework is then formulated as a stochastic nonlinear programming (SNP) model. However, the state-of-the-art commercial solvers are inadequate for solving the proposed SNP model due to its solution complexity. Thus, we customize a hybrid parallel Lagrangian decomposition (HPLD) algorithm, which decomposes the RDP problem into manageable subproblems. Extensive numerical experiments using a real-world dataset demonstrate the computational efficiency of the HPLD algorithm and its ability to converge to a near-globally optimal solution. Sensitivity analyses are conducted focusing on parameters such as horizon length, fleet size, number of dispatchers, and demand elasticity. Numerical results show that the profits under the stochastic scenario are 18% higher than those under the deterministic scenario, indicating the significance of incorporating uncertain and future information into the operational decisions of carsharing systems.
Keywords: One-way station-based carsharing (OSBC); Relocation-dispatch-pricing (RDP); Stochastic nonlinear programming (SNP); Hybrid parallel Lagrangian decomposition (HPLD); Anticipatory-decision rolling horizon (ADRH) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261525000037
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:193:y:2025:i:c:s0191261525000037
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2025.103154
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().