Adaptive signal control at partially connected intersections: A stochastic optimization model for uncertain vehicle arrival rates
Shaocheng Jia,
S.C. Wong and
Wai Wong
Transportation Research Part B: Methodological, 2025, vol. 193, issue C
Abstract:
Optimizing traffic signal control is crucial for improving efficiency in congested urban environments. Current adaptive signal control systems predominantly rely on on-road detectors, which entail significant capital and maintenance costs, thereby hindering widespread implementation. In this paper, a novel connected vehicle (CV)-based adaptive signal control (CVASC) framework is proposed that optimizes signal plans on a cycle-by-cycle basis without the need for on-road detectors, leveraging partial CV data. The framework comprises a consequential system delay (CSD) model, deterministic penetration rate control (DPRC), and stochastic penetration rate control (SPRC). The CSD model analytically estimates vehicle arrival rates and, consequently, the total junction delay, utilizing CV penetration rates as essential inputs. Employing the CSD model without considering CV penetration rate uncertainty results in fixed vehicle arrival rates and leads to DPRC. On the other hand, incorporating CV penetration rate uncertainty accounts for uncertain vehicle arrival rates, establishing SPRC, which poses a high-dimensional, non-convex, and stochastic optimization problem. An analytical stochastic delay model using generalized polynomial chaos expansion is proposed to efficiently and accurately estimate the mean, variance, and their gradients for the CSD model within SPRC. To solve DPRC and SPRC, a gradient-guided golden section search algorithm is introduced. Comprehensive numerical experiments and VISSIM simulations demonstrate the effectiveness of the CVASC framework, emphasizing the importance of accounting for CV penetration rate uncertainty and uncertain vehicle arrival rates in achieving optimal solutions for adaptive signal optimizations.
Keywords: CV-based adaptive signal control; CV penetration rate uncertainty; Stochastic optimization; Generalized polynomial chaos expansion; Gradient-guided golden section search algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261525000104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:193:y:2025:i:c:s0191261525000104
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2025.103161
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().