Data-driven optimization for container ship bunkering management under fuel price uncertainty
Xuecheng Tian,
Shuaian Wang,
Yan Liu and
Ying Yang
Transportation Research Part B: Methodological, 2025, vol. 198, issue C
Abstract:
Fuel prices are a crucial and volatile component of operational costs in maritime transportation. This paper optimizes container ship bunkering decisions under the uncertainty of multi-port fuel prices, using data-driven optimization frameworks that integrate machine learning and mathematical programming models. We address two primary challenges: (i) incorporating spatiotemporal correlations between multi-port fuel prices into predictive models, and (ii) determining the most effective data-driven modeling framework for this problem. To address the first challenge, we develop a two-channel long short-term memory model specifically designed to capture the spatiotemporal dependencies of multi-port fuel prices. For the second challenge, we construct two data-driven modeling frameworks for ship bunkering management: a two-stage contextual deterministic programming model with point predictions (TDP framework) and a multistage contextual stochastic programming model with distributional estimates (MSD framework). Through comprehensive computational experiments using both real-world and synthetic data, we obtain two crucial insights: (i) accounting for the spatiotemporal correlations among multi-port fuel prices significantly improves the accuracy of fuel price predictions; and (ii) the TDP framework is more suited to container shipping routes with fewer ports, while the MSD framework offers advantages in contexts with a higher number of ports.
Keywords: Maritime transportation; Ship bunkering optimization; Uncertainty; Data-driven optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261525000992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:198:y:2025:i:c:s0191261525000992
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2025.103250
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().