Exact solution method for multi-stakeholder freight transportation systems under uncertainty
Gita Taherkhani,
Mojtaba Hosseini and
Ali Hassanzadeh
Transportation Research Part B: Methodological, 2025, vol. 200, issue C
Abstract:
At a time where efficient freight logistics are crucial to global commerce, integrated multi-stakeholder freight transportation systems play a pivotal role in ensuring timely delivery and operational adaptability under uncertainty. This study focuses on the tactical planning of such a system, which processes time-sensitive requests from both carriers and shippers. It orchestrates operations spatially and temporally, combining loads from various shippers into unified transport units. Our approach utilizes a two-stage stochastic programming model that effectively captures the uncertainties inherent in demand. The model formulates an efficient service network that not only meets the immediate logistical demands but also adapts to fluctuating conditions by leveraging available service capacities. To solve this complex model, we develop and implement an exact Benders decomposition-based algorithm. Our solution methodology incorporates several advanced techniques including partial decomposition, cut-lifting for both optimality and feasibility cuts, and various preprocessing steps including variable fixing and the use of valid inequalities. Additionally, we implement acceleration techniques that capitalize on the repetitive nature of our algorithm to enhance efficiency. We design and generate test instances inspired by real-world freight logistics, capturing key operational constraints and varying demand uncertainty levels. These instances enable a systematic evaluation of our model under diverse settings. We then perform extensive computational experiments. Our solution methodology demonstrates superior performance compared to a commercial solver. We also explore the impact of varying service availability among other parameters and the benefits of using stochastic modeling over deterministic approaches. These experiments underscore our model’s capacity to improve operational efficacy and responsiveness when dealing with uncertainty, thereby providing significant insights for both practitioners and researchers involved in freight logistics.
Keywords: Multi-stakeholder systems; Tactical planning; Uncertainty; Freight transportation; Benders decomposition; Acceleration techniques (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261525001377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:200:y:2025:i:c:s0191261525001377
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2025.103288
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().