Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches
Mark H. Keaton
Transportation Research Part B: Methodological, 1989, vol. 23, issue 6, 415-431
Abstract:
Railroad managers must determine (1) which pairs of terminals are to be provided with direct train connections, (2) the frequency of service, (3) how the individual cars are routed through the available configuration of trains and intermediate terminals, and (4) how cars are physically grouped or "blocked" within trains. The objective is to minimize the sum of train costs, car time costs, and classification yard costs, while not exceeding limits on train size and yard volumes. These decisions are modeled as a mixed-integer programming problem, where the decision to operate a given train connection corresponds to 0-1 variable. With no limits on train size, the model can be solved very efficiently using Lagrangian relaxation. If the solution contains some overloaded trains, which is likely, heuristic adjustments are necessary to obtain a feasible operating plan.
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0191-2615(89)90042-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:23:y:1989:i:6:p:415-431
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().