Distributions of queue lengths at fixed time traffic signals
Gregory K. S. Mung,
Antonio C. K. Poon and
William H. K. Lam
Transportation Research Part B: Methodological, 1996, vol. 30, issue 6, 421-439
Abstract:
This paper presents a new model which studies probability distributions of queue lengths at fixed time traffic signals. It extends Haight's model for Poisson arrivals that the arrival distribution during the effective red period is general and the headway between two successive departures is not less than the minimum departure headway. Moreover, the probability generating function of the queue length, at the end of the effective red period, is derived. The probabilities of the queue lengths, at the ends of the effective green, actual red and amber periods, are also obtained. Comparison is made with Haight's model. Finally a case study for the proposed model is reported.
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0191-2615(96)00009-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:30:y:1996:i:6:p:421-439
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().