The real-time deadheading problem in transit operations control
Xu Jun Eberlein,
Nigel H. M. Wilson,
Cynthia Barnhart and
David Bernstein
Transportation Research Part B: Methodological, 1998, vol. 32, issue 2, 77-100
Abstract:
In high frequency transit operations, randomness and incidents often result in highly irregular headways which can significantly decrease service quality. Deadheading is one commonly used real-time operations control strategy that can improve service quality in such situations. When a vehicle is deadheaded, it runs empty from a terminal skipping a number of stations, typically in order to reduce expected large headways at later stations. The real-time deadheading problem is to determine at dispatching time which vehicles to deadhead and how many stations to skip in order to minimize the total passenger cost in the system. This paper formulates this problem, optimally solves a simplified version of the general formulation, and demonstrates that the solutions of the simpler problem are good approximations to the solutions of the more general problem.
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(97)00013-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:32:y:1998:i:2:p:77-100
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().