Bilevel programming for the continuous transport network design problem
Suh-Wen Chiou
Transportation Research Part B: Methodological, 2005, vol. 39, issue 4, 361-383
Abstract:
A Continuous Network Design Problem (CNDP) is to determine the set of link capacity expansions and the corresponding equilibrium flows for which the measures of performance index for the network is optimal. A bilevel programming technique can be used to formulate this equilibrium network design problem. At the upper level problem, the system performance index is defined as the sum of total travel times and investment costs of link capacity expansions. At the lower level problem, the user equilibrium flow is determined by Wardrop's first principle and can be formulated as an equivalent minimization problem. In this paper we exploit a descent approach via the implementation of gradient-based methods to solve CNDP generally where the Karush-Kuhn-Tucker points can be obtained. Four variants of gradient-based methods are presented and numerical comparisons are widely made with the previous on three kinds of test networks. The proposed methods have achieved substantially better results in terms of the robustness to the initials and the computational efficiency in solving equilibrium assignment problems than did others especially when the congested road networks are considered.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00085-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:39:y:2005:i:4:p:361-383
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().