EconPapers    
Economics at your fingertips  
 

A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix

Elisabetta Cherchi and Cristian Guevara

Transportation Research Part B: Methodological, 2012, vol. 46, issue 2, 321-332

Abstract: When the dimension of the vector of estimated parameters increases, simulation based methods become impractical, because the number of draws required for estimation grows exponentially with the number of parameters. In simulation methods, the lack of empirical identification when the number of parameters increases is usually known as the “curse of dimensionality” in the simulation methods. We investigate this problem in the case of the random coefficients Logit model. We compare the traditional Maximum Simulated Likelihood (MSL) method with two alternative estimation methods: the Expectation–Maximization (EM) and the Laplace Approximation (HH) methods that do not require simulation. We use Monte Carlo experimentation to investigate systematically the performance of the methods under different circumstances, including different numbers of variables, sample sizes and structures of the variance–covariance matrix. Results show that indeed MSL suffers from lack of empirical identification as the dimensionality grows while EM deals much better with this estimation problem. On the other hand, the HH method, although not being simulation-based, showed poor performance with large dimensions, principally because of the necessity of inverting large matrices. The results also show that when MSL is empirically identified this method seems superior to EM and HH in terms of ability to recover the true parameters and estimation time.

Keywords: Curse of dimensionality; Random coefficients models; Estimation methods; Monte Carlo experiments (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261511001469
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:46:y:2012:i:2:p:321-332

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2011.10.006

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:transb:v:46:y:2012:i:2:p:321-332