Some insights into a sequential resource allocation mechanism for en route air traffic management
Amy Kim and
Mark Hansen
Transportation Research Part B: Methodological, 2015, vol. 79, issue C, 1-15
Abstract:
This paper presents a game theoretic model of a sequential capacity allocation process in a congestible transportation system. In this particular application, we investigate the governing principles at work in how airlines will time their requests for en route resources under capacity shortfalls and uncertain conditions, when flights are not able to take their preferred route at their preferred departure time slot due to the shortfalls. We examine a sequential “First Submitted First Assigned” (FSFA) capacity allocation process within an en route air traffic flow management (ATFM) program such as the Collaborative Trajectory Options Program (CTOP), which is a Federal Aviation Administration initiative that aims to manage en route capacity constraints brought on by inclement weather and capacity/demand imbalances. In the FSFA process, flights are assigned the best available routes and slots available at the time flight operators submit their preference requests during the planning period, in a sequential manner. Because flight operators compete with one another for resources, in such an allocation process they would be expected to make their requests as early as possible. However, because weather and traffic conditions – and therefore, the values of resources – can change significantly, flight operators may prefer to request resources later in the process rather than earlier. We use a game theoretic setup to understand how flight operators might tradeoff these conflicts and choose an optimal time to submit their preferences for their flights, as submission times are competitive responses by flight operators looking to maximize their benefits. We first develop a loss function that captures the expected utility of submitting preferences under uncertainty about operating conditions. Then, a conceptual model of the FSFA process is constructed using a simultaneous incomplete information game, where flight operators compete for the “prizes” of having submitted their inputs before others. A numerical study is performed in which it is demonstrated that preference submission times are heavily influenced by the general uncertainty surrounding weather and operational conditions of the ATFM program, and each flight operator’s internal ability to handle this uncertainty. A key finding is that, in many of the scenarios presented, an optimal strategy for a flight operator is to submit their preferences at the very beginning of the planning period. If air traffic managers could expect to receive more submissions at the beginning of the planning period, they could more easily coordinate the ATFM program with other ATFM programs taking place or scheduled to take place, and they would have more opportunity to call another FSFA allocation route before the ATFM program begins, should conditions change enough to warrant this. Outputs of the model may provide some general insights to flight operators in planning submission strategies within competitive allocation processes such as FSFA. Also, this work may have a broader application to other sequential resource allocation strategies within congestible and controlled transportation systems.
Keywords: Air transportation; En route air traffic flow management (ATFM); Collaborative Trajectory Options Program (CTOP); Sequential resource allocation; Airline competition; Applied game theory (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515001186
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:79:y:2015:i:c:p:1-15
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2015.05.016
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().