Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization
Carolina Osorio and
Kanchana Nanduri
Transportation Research Part B: Methodological, 2015, vol. 81, issue P2, 520-538
Abstract:
This paper proposes a methodology that allows high-resolution traffic and emissions models, known as microscopic simulation models, to be efficiently used to address transportation optimization problems that account for complex environmental metrics. The methodology consists of a metamodel simulation-based optimization (SO) approach. The metamodel combines traffic and emissions information from high-resolution microscopic simulators with information from lower-resolution analytical macroscopic models. This paper formulates and uses an analytical and differentiable macroscopic approximation of the non-differentiable simulation-based microscopic emissions model. A differentiable macroscopic traffic model is also used.
Keywords: Microscopic simulation; Simulation-based optimization; Urban vehicular emissions; Signal control (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261514002240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:81:y:2015:i:p2:p:520-538
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2014.12.007
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().