Information metrics for improved traffic model fidelity through sensitivity analysis and data assimilation
A. Sopasakis and
M.A. Katsoulakis
Transportation Research Part B: Methodological, 2016, vol. 86, issue C, 1-18
Abstract:
We develop theoretical and computational tools which can appraise traffic flow models and optimize their performance against current time-series traffic data and prevailing conditions. The proposed methodology perturbs the parameter space and undertakes path-wise analysis of the resulting time series. Most importantly the approach is valid even under non-equilibrium conditions and is based on procuring path-space (time-series) information. More generally we propose a mathematical methodology which quantifies traffic information loss.
Keywords: Traffic model parametrization; Inverse dynamic Monte Carlo; Stochastic microscopic dynamics; Information theoretic tools; Relative entropy rate; Fisher information matrix; Controlled fidelity (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516000072
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:86:y:2016:i:c:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.01.003
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().