Symmetries in the kinematic wave model and a parameter-free representation of traffic flow
Jorge A. Laval and
Bhargava R. Chilukuri
Transportation Research Part B: Methodological, 2016, vol. 89, issue C, 168-177
Abstract:
This paper identifies a family of linear transformations where conservation laws are invariant. In the case of a triangular fundamental diagram, it is shown that for a subset of these transformations, flow, total distance traveled and total delay are invariant. This means that for capacity or delay computations one may choose the transformation—i.e., the shape of the triangular diagram—that simplifies the problem the most, which does not require knowing the actual fundamental diagram. This is appealing also for delay-optimizing control problems since they may be solved using an isosceles fundamental diagram, which provides the most efficient numerical methods. Examples are given.
Keywords: Traffic flow; Kinematic wave model; Source term (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515301016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:89:y:2016:i:c:p:168-177
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.02.009
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().