EconPapers    
Economics at your fingertips  
 

Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data

Prasad Buddhavarapu, James G. Scott and Jorge A. Prozzi

Transportation Research Part B: Methodological, 2016, vol. 91, issue C, 492-510

Abstract: Road segments with identical site-specific attributes often exhibit significantly different crash counts due to unobserved reasons. The extent of unobserved heterogeneity associated with a road feature is to be estimated prior to selecting the relevant safety treatment. Moreover, crash count data is often over-dispersed and spatially correlated. This paper proposes a spatial negative binomial specification with random parameters for modeling crash counts of contiguous road segments. The unobserved heterogeneity is incorporated using a finite multi-variate normal mixture prior on the random parameters; this allows for non-normality, skewness in the distribution of the random parameters, facilitates correlation across the random parameters, and relaxes any distributional assumptions. The model extracts the inherent groups of road segments with crash counts that are equally sensitive to the road attributes on an average; the heterogeneity within these groups is also allowed in the proposed framework. The specification simultaneously accounts for potential spatial correlation of the crash counts from neighboring road segments. A Gibbs sampling framework is proposed that leverages recent theoretical developments on data-augmentation algorithms, and elegantly sidesteps many of the computational difficulties usually associated with Bayesian inference of count models. Empirical results suggests the presence of two latent groups and spatial correlation within the study road network. Road features with significantly different effect on crash counts across two latent groups of road segments were identified.

Keywords: Negative binomial model; Unobserved heterogeneity; Finite-mixture multivariate normal prior; Spatial dependence; Data augmentation; Polya-Gamma random variables; Intrinsic Conditional Auto Regressive (ICAR) priors; Road condition (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516303721
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:91:y:2016:i:c:p:492-510

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2016.06.005

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:91:y:2016:i:c:p:492-510