A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM
Andrea Papola
Transportation Research Part B: Methodological, 2016, vol. 94, issue C, 80-96
Abstract:
This paper proposes a new random utility model characterised by a cumulative distribution function (cdf) obtained as a finite mixture of different cdfs. This entails that choice probabilities, covariances and elasticities of this model are also a finite mixture of choice probabilities, covariances and elasticities of the mixing models. As a consequence, by mixing nested logit cdfs, a model is generated with closed-form expressions for choice probabilities, covariances and elasticities and with, potentially, a very flexible correlation pattern. Importantly, the closed-form covariance expression opens up interesting application possibilities in some special choice contexts, like route choice, where prior expectations in terms of the covariance matrix can be formulated.
Keywords: Nested logit models; Mixing models; Closed-form correlation matrix (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516303083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:94:y:2016:i:c:p:80-96
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.09.008
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().