Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography
Fang Zhou,
Xiaopeng Li and
Jiaqi Ma
Transportation Research Part B: Methodological, 2017, vol. 95, issue C, 394-420
Abstract:
This paper studies a problem of designing trajectories of a platoon of vehicles on a highway segment with advanced connected and automated vehicle technologies. This problem is very complex because each vehicle trajectory is essentially an infinite-dimensional object and neighboring trajectories have complex interactions (e.g., car-following behavior). A parsimonious shooting heuristic algorithm is proposed to construct vehicle trajectories on a signalized highway segment that comply with boundary conditions for vehicle arrivals, vehicle mechanical limits, traffic lights and vehicle following safety. This algorithm breaks each vehicle trajectory into a few sections that are analytically solvable. This decomposes the originally hard trajectory design problem to a simple constructive heuristic. Then we slightly adapt this shooting heuristic algorithm to efficiently solve a leading vehicle problem on an uninterrupted freeway. To study theoretical properties of the proposed algorithms, the time geography theory is generalized by considering finite accelerations. With this generalized theory, it is found that under mild conditions, these algorithms can always obtain a feasible solution to the original complex trajectory design problem. Further, we discover that the shooting heuristic solution is a generalization of the solution to the classic kinematic wave theory by incorporating finite accelerations. We identify the theoretical bounds to the difference between the shooting heuristic solution and the kinematic wave solution. Numerical experiments are conducted to verify the theoretical results and to draw additional managerial insights into the potential of trajectory design in improving traffic performance. In summary, this paper provides a methodological and theoretical foundation for advanced traffic control by optimizing the trajectories of connected and automated vehicles. Building upon this foundation, an optimization framework will be presented in a following paper as Part II of this study.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515301806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:95:y:2017:i:c:p:394-420
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.05.007
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().