Traffic predictive control from low-rank structure
Samuel Coogan,
Christopher Flores and
Pravin Varaiya
Transportation Research Part B: Methodological, 2017, vol. 97, issue C, 1-22
Abstract:
The operation of most signalized intersections is governed by predefined timing plans that are applied during specified times of the day. These plans are designed to accommodate average conditions and are unable to respond to large deviations in traffic flow. We propose a control approach that adjusts time-of-day signaling plans based on a prediction of future traffic flow. The prediction algorithm identifies correlated, low rank structure in historical measurement data and predicts future traffic flow from real-time measurements by determining which structural trends are prominent in the measurements. From this prediction, the controller then determines the optimal time of day to apply new timing plans. We demonstrate the potential benefits of this approach using eight months of high resolution data collected at an intersection in Beaufort, South Carolina.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S019126151630162X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:97:y:2017:i:c:p:1-22
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.11.013
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().