A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points
Jørgen Thorlund Haahr,
David Pisinger and
Mohammad Sabbaghian
Transportation Research Part B: Methodological, 2017, vol. 99, issue C, 167-182
Abstract:
This paper considers a novel solution method for generating improved train speed profiles with reduced energy consumption. The solution method makes use of a time-space graph formulation which can be solved through Dynamic Programming. Instead of using uniform discretization of time and space as seen previously in the literature, we rely on an event-based decomposition that drastically reduces the search space. This approach is very flexible, making it easy to handle, e.g., speed limits, changes in altitude, and passage points that need to be crossed within a given time window. Based on solving an extensive number of real-life problem instances, our benchmarks show that the proposed solution method is able to satisfy all secondary constraints and still be able to decrease energy consumption by 3.3% on average compared to a commercial solver provided by our industrial collaborator, Cubris. The computational times are generally very low, making it possible to recompute the train speed profile in case of unexpected changes in speed restrictions or timings. This is a great advantage over static offline lookup tables. Also, the framework is very flexible, making it possible to handle a number of additional constraints on robustness, passenger comfort etc. Selected details of the method and benchmark are only described at a high level for confidentiality reasons.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516301667
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:99:y:2017:i:c:p:167-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.12.016
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().