Freight transport platoon coordination and departure time scheduling under travel time uncertainty
Wei Zhang,
Erik Jenelius and
Xiaoliang Ma
Transportation Research Part E: Logistics and Transportation Review, 2017, vol. 98, issue C, 1-23
Abstract:
The paper formulates and analyzes a freight transport platoon coordination and departure time scheduling problem under travel time uncertainty. The expected cost minimization framework accounts for travel time cost, schedule miss penalties and fuel cost. It is shown that platooning is beneficial only when scheduled arrival times differ less than a certain threshold. Travel time uncertainty typically reduces the threshold schedule difference for platooning to be beneficial. Platooning in networks is less beneficial on converging routes than diverging routes, due to delay at the merging point. The model provides valuable insights regarding platooning benefits for freight transport planning.
Keywords: Heavy-duty vehicle platooning; Freight transport; Scheduling; Travel time uncertainty (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554516304938
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:98:y:2017:i:c:p:1-23
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2016.11.008
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().