Forecasting Sales in the Supply Chain Based on the LSTM Network: The Case of Furniture Industry
Damian Pliszczuk,
Piotr Lesiak,
Krzysztof Zuk and
Tomasz Cieplak
European Research Studies Journal, 2021, vol. XXIV, issue Special 1 - Part 2, 627-636
Abstract:
Purpose: The aim of the article is to develop an algorithm for forecasting sales in the supply chain based on the LSTM network using historical sales data of a furniture industry company. Design/Methodology/Approach: Machine learning was used to analyze the data. The method of predicting the behavior of sales value in a specific time horizon in terms of a time series was presented. The LSTM network was used to predict sales. The network used is a special case of recursive neural networks with an important difference in the repeating module. Due to the fact that the activities are carried out on time series, the data was analyzed in terms of the stationarity of such series or trends and seasonal effects. The data used in the analysis includes the daily sales values of a group of certain furniture collections over a specified time horizon. The stationarity of the time series can have a significant impact on its properties and behavior prediction, where failure to bring the time series to the correct form of stationarity can lead to false results. Findings: The result of the research was the analysis of sales forecasting in the supply chain based on machine learning. As a result of the data transformations, the algorithm was able to recognize and learn long-term relationships. Practical Implications: The presented method of predicting the behavior of sales value in a specific time horizon allows for a look at the forecasting of demand in terms of the supply chain. The sales data of a company from the furniture industry were used for the analysis. Originality/Value: A novelty is the use of the LSTM network trained on real transaction data of a furniture company that has based its business on the supply chain and cooperates with its suppliers and recipients in Central and Eastern Europe.
Keywords: Machine learning; time series; LSTM; supply chain; forecasting. (search for similar items in EconPapers)
JEL-codes: C45 C61 E27 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://ersj.eu/journal/2291/download (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ers:journl:v:xxiv:y:2021:i:special1-part2:p:627-636
Access Statistics for this article
More articles in European Research Studies Journal from European Research Studies Journal
Bibliographic data for series maintained by Marios Agiomavritis ().