EconPapers    
Economics at your fingertips  
 

Leaf Characteristics at Recovery Stage Affect Seed Oil and Protein Content Under the Interactive Effects of Nitrogen and Waterlogging in Rapeseed

Jie Kuai, Xiaoyong Li, Yan Xie, Zhen Li, Bo Wang and Guangsheng Zhou
Additional contact information
Jie Kuai: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Xiaoyong Li: Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430070, China
Yan Xie: Haimen Municipal Guidance Station for Crop Cultivation and Technology, Haimen 226100, China
Zhen Li: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Bo Wang: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Guangsheng Zhou: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Agriculture, 2020, vol. 10, issue 6, 1-16

Abstract: Four nitrogen rates (0, 90, 180, and 270 kg ha −1 ) were applied to the waterlogging-tolerant variety ZS 9 and the sensitive variety GH01. Seedlings with five leaves were waterlogged for 0 (control) or 10 days to investigate the effects of nitrogen on the quality of waterlogged rapeseed. Compared with controls, the seed oil content of waterlogged rapeseed increased slightly in GH01 and significantly in ZS 9 with nitrogen application, which can be explained by the following. (1) after waterlogging, the biomass distribution in roots and leaves of ZS 9 decreased, which alleviated physiological water shortage. Conversely, biomass distribution in roots of GH01 increased, which was not synchronized with the leaf biomass change. (2) After waterlogging at 90–270 kg N ha −1 , the leaf number at bolting and flowering was increased in ZS 9 but decreased in GH01 compared with the control. The decrease in leaf area and SPAD value were greater for GH01 after waterlogging, which limited photosynthesis. (3) The leaf soluble protein at bolting was highest in ZS 9 and lowest in GH01. The sensitive variety showed poor growth. The inhibition of seed protein synthesis resulted in an increase in the oil content of waterlogged rapeseed with nitrogen. The seed oil of the waterlogging-tolerant variety was most significantly negatively correlated with leaf soluble protein content at the flowering stage, while the protein content showed the opposite correlation. The seed oil of the waterlogging-sensitive variety was most significantly negatively correlated with the number of leaves at the bolting and flowering stage, while the seed protein content had opposite correlations.

Keywords: rapeseed; waterlogging; nitrogen; quality; leaf characteristics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/10/6/207/pdf (application/pdf)
https://www.mdpi.com/2077-0472/10/6/207/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:10:y:2020:i:6:p:207-:d:368261

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:10:y:2020:i:6:p:207-:d:368261