An Efficient Case Retrieval Algorithm for Agricultural Case-Based Reasoning Systems, with Consideration of Case Base Maintenance
Zhaoyu Zhai,
José-Fernán Martínez Ortega,
Néstor Lucas Martínez and
Huanliang Xu
Additional contact information
Zhaoyu Zhai: Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain
José-Fernán Martínez Ortega: Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain
Néstor Lucas Martínez: Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain
Huanliang Xu: College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Agriculture, 2020, vol. 10, issue 9, 1-21
Abstract:
Case-based reasoning has considerable potential to model decision support systems for smart agriculture, assisting farmers in managing farming operations. However, with the explosive amount of sensing data, these systems may achieve poor performance in knowledge management like case retrieval and case base maintenance. Typical approaches of case retrieval have to traverse all past cases for matching similar ones, leading to low efficiency. Thus, a new case retrieval algorithm for agricultural case-based reasoning systems is proposed in this paper. At the initial stage, an association table is constructed, containing the relationships between all past cases. Afterwards, attributes of a new case are compared with an entry case. According to the similarity measurement, associated similar or dissimilar cases are then compared preferentially, instead of traversing the whole case base. The association of the new case is generated through case retrieval and added in the association table at the step of case retention. The association table is also updated when a closer relationship is detected. The experiment result demonstrates that our proposal enables rapid case retrieval with promising accuracy by comparing a fewer number of past cases. Thus, the retrieval efficiency of our proposal outperforms typical approaches.
Keywords: case-based reasoning; case retrieval; case base maintenance; knowledge management; smart agriculture (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/10/9/387/pdf (application/pdf)
https://www.mdpi.com/2077-0472/10/9/387/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:10:y:2020:i:9:p:387-:d:408188
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().