EconPapers    
Economics at your fingertips  
 

Critical Temperature-Humidity Index Thresholds Based on Surface Temperature for Lactating Dairy Cows in a Temperate Climate

Geqi Yan, Zhengxiang Shi and Hao Li
Additional contact information
Geqi Yan: College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
Zhengxiang Shi: College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
Hao Li: College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China

Agriculture, 2021, vol. 11, issue 10, 1-16

Abstract: Detecting the early signs of heat stress is highly important in dairy farming. The surface temperature (ST) of cattle can reflect their thermal status and using such a measuring method can be efficient and non-invasive. However, few studies have reported the temperature-humidity index (THI) thresholds for ST. This study aimed to identify the critical THI thresholds for the ST of dairy cows and to evaluate the effects of the lactation stage and the lactation number. The study included 233 Holstein lactating cows from July 2020 to October 2020 in a temperate climate in China. There were 1556 records of the rectal temperature, and the maximum ST (STmax) and average ST (STave) of the head, eye, cheek, ear, neck, trunk, udder, foreleg, and hindleg were recorded. Air temperature and relative humidity were recorded to calculate the average THI. Physiological data were collected twice daily (08:00–12:00, 14:00–16:00). The critical THI thresholds were determined using the breakpoints of piecewise linear models. The significance of breakpoints was tested using the Davies test. A one-way ANOVA was used to test the effect of the lactation stage (0–60 DIM, 61–200 DIM, 201–300 DIM, DIM is days in milk) and the lactation number (1, 2, 3+) on the THI thresholds. The results showed that the rectal temperature was significantly positively correlated with all the ST variables (0.57 ≤ r ≤ 0.71, p < 0.01). The critical THI thresholds for STmax (mean of 76.1 THI, range of 73.6 to 77.9 THI) were significantly higher than those for STave (mean of 72.6 THI, range of 69.1 to 77.2 THI) ( p < 0.01). The lactation stage only significantly affected the thresholds for STmax ( p < 0.05), and the lactation number did not significantly influence the thresholds for both STmax and STave ( p > 0.05). This study concluded that the STave was more appropriate to define thresholds than the STmax. The threshold for the STave of the cheek (69.1 THI) was the lowest among the thresholds, indicating that the STave of the cheek could be a prior ST variable to determine critical THI thresholds. Our findings demonstrated the potential of using ST variables to define critical THI thresholds.

Keywords: heat stress; temperature-humidity index; surface temperature; infrared thermography; threshold (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/11/10/970/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/10/970/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:10:p:970-:d:650694

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:970-:d:650694