Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition
Joanna Pluto-Kossakowska
Additional contact information
Joanna Pluto-Kossakowska: Faculty of Geodesy and Cartography, Warsaw University of Technology, 00-661 Warsaw, Poland
Agriculture, 2021, vol. 11, issue 10, 1-16
Abstract:
This paper presents a review of the conducted research in the field of multitemporal classification methods used for the automatic identification of crops and arable land using optical satellite images. The review and systematization of these methods in terms of the effectiveness of the obtained results and their accuracy allows for the planning towards further development in this area. The state of the art analysis concerns various methodological approaches, including selection of data in terms of spatial resolution, selection of algorithms, as well as external conditions related to arable land use, especially the structure of crops. The results achieved with use of various approaches and classifiers and subsequently reported in the literature vary depending on the crops and area of analysis and the sources of satellite data. Hence, their review and systematic conclusions are needed, especially in the context of the growing interest in automatic processes of identifying crops for statistical purposes or monitoring changes in arable land. The results of this study show no significant difference between the accuracy achieved from different machine learning algorithms, yet on average artificial neural network classifiers have results that are better by a few percent than others. For very fragmented regions, better results were achieved using Sentinel-2, SPOT-5 rather than Landsat images, but the level of accuracy can still be improved. For areas with large plots there is no difference in the level of accuracy achieved from any HR images.
Keywords: crop detection; machine learning; satellite image classification (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2077-0472/11/10/999/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/10/999/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:10:p:999-:d:655217
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().