EconPapers    
Economics at your fingertips  
 

Application of Optical Spectrometer to Determine Maturity Level of Oil Palm Fresh Fruit Bunches Based on Analysis of the Front Equatorial, Front Basil, Back Equatorial, Back Basil and Apical Parts of the Oil Palm Bunches

Jia Quan Goh, Abdul Rashid Mohamed Shariff and Nazmi Mat Nawi
Additional contact information
Jia Quan Goh: Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
Abdul Rashid Mohamed Shariff: Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
Nazmi Mat Nawi: Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia

Agriculture, 2021, vol. 11, issue 12, 1-20

Abstract: The quality of palm oil depends on the maturity level of the oil palm fresh fruit bunch (FFB). This research applied an optical spectrometer to collect the reflectance data of 96 FFB from unripe, ripe, and overripe classes for the maturity level classification. The spectrometer scanned the FFB from different parts, including apical, front equatorial, front basil, back equatorial, and back basil. Principal component analysis was carried out to extract principal components from the reflectance data of each of the parts. The extracted principal components were used in an ANOVA test, which found that the reflectance data of the front equatorial showed statistically significant differences between the three maturity groups. Then, the collected reflectance data was subjected to machine learning training and testing by using the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM). The front equatorial achieved the highest accuracy, of 90.6%, by using SVM as classifiers; thus, it was proven to be the most optimal part of FFB that can be utilized for maturity classification. Next, the front equatorial dataset was divided into UV (180–400 nm), blue (450–490 nm), green (500–570 nm), red (630–700 nm), and NIR (800–1100 nm) regions for classification testing. The UV bands showed a 91.7% accuracy. After this, representative bands of 365, 460, 523, 590, 623, 660, 735, and 850 nm were extracted from the front equatorial dataset for further classification testing. The 660 nm band achieved an 89.6% accuracy using KNN as a classifier. Composite models were built from the representative bands. The combination of 365, 460, 735, and 850 nm had the highest accuracy in this research, which was 93.8% with the use of SVM. In conclusion, these research findings showed that the front equatorial has the better ability for maturity classification, whereas the composite model with only four bands has the best accuracy. These findings are useful to the industry for future oil palm FFB classification research.

Keywords: oil palm; fresh fruit bunch; ripeness; optical spectrometer (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/11/12/1179/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/12/1179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:12:p:1179-:d:685463

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1179-:d:685463