Testing Novel New Drip Emitter with Variable Diameters for a Variable Rate Drip Irrigation
Hadi A. AL-agele,
Lloyd Nackley and
Chad Higgins
Additional contact information
Hadi A. AL-agele: Department of Biological and Ecological Engineering, College of Agricultural Science, Oregon State University, Corvallis, OR 97331, USA
Lloyd Nackley: North Willamette Research and Extension Center, Department of Horticulture, College of Agricultural Science, Oregon State University, Aurora, OR 97201, USA
Chad Higgins: Department of Biological and Ecological Engineering, College of Agricultural Science, Oregon State University, Corvallis, OR 97331, USA
Agriculture, 2021, vol. 11, issue 2, 1-8
Abstract:
This research presents a new variable rate drip irrigation (VRDI) emitter design that can monitor individual water drops. Conventional drip systems cannot monitor the individual water flow rate per emitter. Application uniformity for conventional drip emitters can be decreased by clogged emitters, irregular emitter orifices, and decreases in pressure. A VRDI emitter can overcome the irrigation challenges in the field by increasing water application uniformity for each plant and reducing water losses. Flow rate is affected by the diameter of the delivery pipe and the pressure of the irrigation delivery system. This study compares the volumetric water flow rate for conventional drip emitters and new VRDI emitters with variable diameters inner (1 mm, 1.2 mm, 1.4 mm, and 1.6 mm) and outside (3 mm, 3.5 mm, 4 mm, and 4.5 mm) with three pressures (34 kPa, 69 kPa, and 103 kPa). The tests revealed that the new VRDI emitter had flow rates that increased as the operating pressure increased similar to a conventional drip tube. The flow rate was slightly increased in the VRDI with pressure, but even this increase did not show large changes in the flow rate. The flow rate of the conventional drip tube was 88% larger than the VRDI emitter for all pressures ( p < 0.05). However, operating pressure did not affect the drop sizes at the VRDI emitter, but the generalized linear mixed models (GLM) results show that volume per drop was impacted by the outside diameter of the VRDI outlet ( p < 0.05). The interaction between the inner and outside diameter was also significant at p < 0.01, and the interaction between outside diameter and pressure was statistically significant at p < 0.01. The electronic components used to control our VRDI emitter are readily compatible with off-the-shelf data telemetry solutions; thus, each emitter could be controlled remotely and relay data to a centralized data repository or decision-maker, and a plurality of these emitters could be used to enable full-field scale VRDI.
Keywords: drip irrigation; flow rate; pressure compensation (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/11/2/87/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/2/87/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:2:p:87-:d:483603
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().