Impact of Agricultural Practices on Water Quality of Old Woman Creek Watershed, Ohio
Israel A. Olaoye,
Remegio B. Confesor and
Joseph D. Ortiz
Additional contact information
Israel A. Olaoye: Texas Institute for Applied Environmental Research (TIAER), Tarleton State University, Member of The Texas A&M University System, Stephenville, TX 76401, USA
Remegio B. Confesor: Norwegian Institute of Bioeconomy Research, 1430 Ås, Norway
Joseph D. Ortiz: Department of Geology, Kent State University, Kent, OH 44240, USA
Agriculture, 2021, vol. 11, issue 5, 1-20
Abstract:
The effect of agricultural practices on water quality of Old Woman Creek (OWC) watershed was evaluated in a hydrological model using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate data and 20 different global circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). A hydrological model was set up in the Soil and Water Assessment Tool (SWAT), while calibration was done using a Multi-Objective Evolutionary Algorithm and Pareto Optimization with PRISM climate data. Validation was done using the measured data from the USGS gage station at Berlin Road in the OWC watershed and water quality data were obtained from the water quality lab, Heidelberg University. Land use scenario simulations were conducted by varying percentages of agricultural land from 20% to 40%, 53.5%, 65%, and 80% while adjusting the forest area. A total of 105 simulations was run for the period 2015–2017: one with PRISM data and 20 with CMIP5 model data for each of the five land use classes scenarios. Ten variables were analyzed, including flow, sediment, organic nitrogen, organic phosphorus, mineral phosphorus, chlorophyll a, CBOD, dissolved oxygen, total nitrogen, and total phosphorus. For all the variables of interest, the average of the 20 CMIP5 simulation results show good correlation with the PRISM results with an underestimation relative to the PRISM result. The underestimation was insignificant in organic nitrogen, organic phosphorus, total nitrogen, chlorophyll a, CBOD, and total phosphorus, but was significant in CMIP5 flow, sediment, mineral phosphorus, and dissolved oxygen. A weak negative correlation was observed between agricultural land percentages and flow, and between agricultural land percentages and sediment, while a strong positive correlation was observed between agricultural land use and the water quality variables. A large increase in farmland will produce a small decrease in flow and sediment transport with a large increase in nutrient transport, which would degrade the water quality of the OWC estuary with economic implications.
Keywords: SWAT; CMIP5; simulations; calibration; validation (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2077-0472/11/5/426/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/5/426/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:5:p:426-:d:550925
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().