EconPapers    
Economics at your fingertips  
 

The Effects of Soil Compaction and Different Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields of Winter Oilseed Rape and Cereals

Krzysztof Orzech, Maria Wanic and Dariusz Załuski
Additional contact information
Krzysztof Orzech: Department of Agroecosystems and Horticulture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Maria Wanic: Department of Agroecosystems and Horticulture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Dariusz Załuski: Department of Genetic, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland

Agriculture, 2021, vol. 11, issue 7, 1-17

Abstract: Progressive soil compaction is a disadvantage of intensive tillage. Compaction exerts a negative impact on the physical properties of soil and decreases crop performance. The adverse effects of soil compaction can be mitigated by replacing conventional tillage with simplified tillage techniques. Simplified tillage exerts a protective effect on soil, reduces production costs and preserves agricultural ecosystems. The aim of this study was to determine the influence of compaction and different tillage methods on the bulk density and moisture content of soil. The experimental factors were as follows: Soil compaction before sowing (non-compacted control treatment and experimental treatments where soil was compacted after the harvest of the preceding crop) and four different methods of seedbed preparation in a three-field rotation system (winter oilseed rape, winter wheat, spring barley). The influence of compaction on the bulk density and moisture content of soil varied across the rotated crops and their developmental stages. Soil compaction had no significant effect on the analyzed parameters in the cultivation of winter oilseed rape. In treatments sown with winter wheat, soil compaction resulted in significantly lower soil density and significantly higher soil moisture content. In plots sown with spring barley, soil compaction led to a significant increase in the values of both parameters. The average bulk density of soil after various tillage operations in the examined crop rotation system ranged from 1.49–1.69 g·m −3 (winter oilseed rape), 1.47–1.59 g·m −3 (winter wheat), 1.47–1.61 g·m −3 (spring barley). The bulk density and moisture content of soil were lowest after conventional tillage (control treatment) and higher after simplified tillage. Regardless of soil compaction, the greatest reduction in winter oilseed rape yields was noted in response to skimming, harrowing and the absence of pre-sowing plowing. Spring barley yields were higher in non-compacted treatments, whereas the reverse was observed in winter wheat. Chisel plowing and single plowing induced the greatest decrease in wheat yields relative to conventional tillage. Single plowing significantly decreased the grain yield of spring barley relative to the tillage system that involved skimming and fall plowing to a depth of 25.

Keywords: yield; physical properties of soil; crop rotation; plant growth stages; wheat; spring barley (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/2077-0472/11/7/666/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/7/666/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:7:p:666-:d:594252

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:666-:d:594252