EconPapers    
Economics at your fingertips  
 

Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors

Hanjie Dou, Changyuan Zhai, Liping Chen, Xiu Wang and Wei Zou
Additional contact information
Hanjie Dou: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
Changyuan Zhai: Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
Liping Chen: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
Xiu Wang: Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
Wei Zou: Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China

Agriculture, 2021, vol. 11, issue 8, 1-18

Abstract: Orchard pesticide off-target deposition and drift cause substantial soil and water pollution, and other environmental pollution. Orchard target-oriented spraying technologies have been used to reduce the deposition and drift caused by off-target spraying and control environmental pollution to within an acceptable range. Two target-oriented spraying systems based on photoelectric sensors or ultrasonic sensors were developed. Three spraying treatments of young cherry trees and adult apple trees were conducted using a commercial sprayer with a photoelectric-based target-oriented spraying system, an ultrasonic-based target-oriented spraying system or no target-oriented spraying system. A rhodamine tracer was used instead of pesticide. Filter papers were fixed in the trees and on the ground. The tracer on the filter papers was washed off to calculate the deposition distribution in the trees and on the ground. The deposition data were used to evaluate the systems and pesticide off-target deposition achieved with orchard target-oriented sprayers. The results showed that the two target-oriented spraying systems greatly reduced the ground deposition compared to that caused by off-target spraying. Compared with that from off-target spraying, the ground deposition from photoelectric-based (trunk-based) and ultrasonic-based (canopy-based) target-oriented spraying decreased by 50.63% and 38.74%, respectively, for the young fruit trees and by 21.66% and 29.87%, respectively, for the adult fruit trees. The trunk-based target-oriented detection method can be considered more suitable for young trees, whereas the canopy-based target-oriented detection method can be considered more suitable for adult trees. The maximum ground deposition occurred 1.5 m from the tree trunk at the back of the tree canopy and was caused by the high airflow at the air outlet of the sprayer. A suitable air speed and air volume at the air outlet of the sprayer can reduce pesticide deposition on the ground.

Keywords: orchard spraying; target-oriented sprayer; photoelectric sensor; ultrasonic sensors; off-target deposition (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2077-0472/11/8/753/pdf (application/pdf)
https://www.mdpi.com/2077-0472/11/8/753/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:11:y:2021:i:8:p:753-:d:610597

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:11:y:2021:i:8:p:753-:d:610597