EconPapers    
Economics at your fingertips  
 

The Impact of Different Planting Systems on the Bacterial Diversity of Rice Cultivated in Saline Soil Based on 16S rRNA Gene-Based Metagenomic Insights

Pugazhenthi Davidson Rokins, Nellaiappan Olaganathan Gopal (), Rangasamy Anandham and Ramasamy Saraswathi
Additional contact information
Pugazhenthi Davidson Rokins: Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
Nellaiappan Olaganathan Gopal: Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
Rangasamy Anandham: Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
Ramasamy Saraswathi: Department of Plant Genetic Resources, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India

Agriculture, 2022, vol. 12, issue 10, 1-17

Abstract: Soil salinity is considered to be a major impediment to the production of rice among other abiotic stresses. In this study, 16S rRNA Illumina amplicon sequencing was performed to characterise the halophilic communities entrapped in rice rhizosphere soil cultivated in different planting systems (conventional, aerobic and System of Rice Intensification (SRI)) under saline conditions. The physicochemical properties and urease, soil dehydrogenase, alkaline phosphatase and arylsulphatase activity of soil samples were evaluated to understand their influence on the bacterial communities of the soil. Electrical conductivity (EC) of soil was lower in SRI soil samples, while the available major soil nutrients (nitrogen, phosphorous and potassium) content and soil enzyme activities such as dehydrogenase, alkaline phosphatase, urease and arylsulphatase were higher. A total of 2,516,700 reads were generated by amplicon sequencing of the hypervariable V3–V4 regions of bacterial 16S rRNA gene and were clustered into 273,447 OTU operational taxonomic units. The total number of Operational Taxonomic Units (OTUs) was higher in the conventional soil samples compared to the SRI and aerobic soil samples. Metagenomic analysis revealed that Proteobacteria was the most dominant phyla in all the planting systems followed by Actinobacteria, Firmicutes and Chloroflexi. The alpha diversity index was higher in conventional soil samples compared to other samples and more species diversity was found in SRI soil samples. KEGG analysis revealed that bacterial communities in different soil samples showed varied functional properties. The bacterial diversity of saline soil in this study can be utilised to identify microbial communities with biotechnological potential that can be employed for plant growth promotion in saline environments.

Keywords: rice; rhizosphere soil; salinity; planting system; bacterial diversity; proteobacteria (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/10/1624/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/10/1624/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:10:p:1624-:d:934787

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1624-:d:934787