EconPapers    
Economics at your fingertips  
 

Numerical Study of Pneumatic Conveying of Rapeseed through a Pipe Bend by DEM-CFD

Yao Xiao, Zitao Ma, Mingliang Wu and Haifeng Luo ()
Additional contact information
Yao Xiao: College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China
Zitao Ma: College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China
Mingliang Wu: College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China
Haifeng Luo: College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China

Agriculture, 2022, vol. 12, issue 11, 1-14

Abstract: In the wide-width and high-speed operation of the rapeseed air-feeding planter, the air-feeding seed metering system adopts the top-down seed tube of different structural types in the production process, thus leading to significant differences in the discharge consistency and breakage rate of the respective row in the seeding process. Thus, the corrugated, hole-type, and ordinary round-tube seed tubes were taken as the research objects for this study, and virtual walls were introduced to compare and analyze the movement of seeds after collision with the seed tubes that had different wall structures. The effects of three types of seed tubes on the motion characteristics of seed particles were analyzed using DEM-CFD gas-solid coupling, and the simulation results were verified through bench experiments. The results indicated that when the inlet velocity was 16 m/s, and there was no material; the average error between the simulated value and the examined value of the airflow velocity at the same point of the vertical conveying pipe of the ordinary round-tube seed tube was 6.71%, thus verifying the feasibility of the simulation model built establishment of this study; when the inlet airflow velocity was 16 m/s and the seed particles were generated at the same per second, both the corrugated and hole-type seed tubes had a surge in airflow speed in the elbow part, and the highest airflow of the corrugated and hole-type pipes the velocities were 32.48 and 26.20 m/s, respectively. The corrugated and hole-type structure significantly affected the airflow field characteristics in the seed tube; the corrugated and hole-type seed tubes significantly improved the stable delivery of seeds, and the speed and force of the seeds were similar “sinusoidal fluctuation”, and the stagnation time of the seeds in the ordinary round-tube, corrugated, and hole-type seed tubes were 0.3, 0.38, and 0.48 s, respectively, and the seed velocities at the outlet were 5.18, 1.73, and 3.76 m/s, respectively. This study provides a reference for the optimization of the structure of the seed tube of the air-feeding seed metering system.

Keywords: air-feeding seed discharge system; seed tube; gas-solid two-phase flow; computer simulation (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/11/1845/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/11/1845/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:11:p:1845-:d:962580

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1845-:d:962580