Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of DREB Genes That Respond to Biotic and Abiotic Stresses in Cucumber
Can Wang,
Jing Han,
Ting Wang,
Chunhua Chen,
Junyi Liu,
Zhixuan Xu,
Qingxia Zhang,
Lina Wang and
Zhonghai Ren ()
Additional contact information
Can Wang: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Jing Han: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Ting Wang: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Chunhua Chen: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Junyi Liu: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Zhixuan Xu: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Qingxia Zhang: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Lina Wang: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Zhonghai Ren: State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Agriculture, 2022, vol. 12, issue 11, 1-21
Abstract:
The production of cucumber ( Cucumis sativus L.) is often harmed by biotic and abiotic stresses. Although the dehydration-responsive element-binding (DREB) transcription factors, playing vital roles in stress responses, have been characterized in several plant species, little is known about the pan-genome characteristics of DREB genes and their expression patterns under different stresses in cucumber. In this study, we identified 55 CsDREBs from the cucumber pan-genomes of 13 accessions, but only four accessions had all the genes. Most of the CsDREB proteins had sequence length and/or amino acid variations, and only four of them had no variation among different accessions. Using the 55 CsDREBs from ‘9930’, we analyzed their gene structures, conserved domains, phylogenetic relationships, gene promoter’s cis-elements and syntenic relationships, and classified them into six groups. Expression pattern analysis revealed that eight CsDREBs showed constitutive expression (FPKM > 1 in all samples), and different CsDREBs showed specifically high expression in root, stem, leaf, tendril, male-flower, female flower, and ovary, respectively, suggesting that these genes might be important for morphogenesis and development in cucumber. Additionally, a total of 31, 22, 30 and nine CsDREBs were differentially expressed in responding to the treatments of heat, NaCl and/or silicon, power mildew and downy mildew, respectively. Interestingly, CsDREB33 could respond to all the tested stresses. Our results provide a reference and basis for further investigation of the function and mechanism of the DREB genes for resistance breeding in cucumber.
Keywords: pan-genome; cucumber; DREB; transcription factor; abiotic stress response; biotic stress response (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/12/11/1879/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/11/1879/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:11:p:1879-:d:967396
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().