EconPapers    
Economics at your fingertips  
 

Analysis and Testing of Rigid–Flexible Coupling Collision Harvesting Processes in Blueberry Plants

Haibin Wang (), Xiaomeng Lv, Feng Xiao and Liangliang Sun
Additional contact information
Haibin Wang: College of Engineering and Technology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
Xiaomeng Lv: College of Engineering and Technology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
Feng Xiao: College of Engineering and Technology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
Liangliang Sun: College of Engineering and Technology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China

Agriculture, 2022, vol. 12, issue 11, 1-30

Abstract: China possesses a vast territory, and the manual harvesting of blueberries is time-consuming and labor-intensive. Due to the planting agronomy differences in other countries, China needs to develop a domestic blueberry harvester to realize mechanical blueberry harvesting. In the harvesting process, “collision” is the core problem. Most of the literature has studied rigid body–rigid body collision, while few authors have studied rigid–flexible coupling collision mechanisms in the field of berry harvesting. In this paper, a rigid–flexible coupling collision model between the harvester and the blueberry plant was established based on the L-N nonlinear spring damping model (describing the collision force model between two colliding objects, consisting of the nonlinear spring and the damper) and improved the Coulomb model (the tangential collision force model), and the collision mechanism of blueberry harvesting was analyzed. The harvesting collision process was analyzed using both MATLAB and ADAMS software and the same conclusions were obtained: the collision force and fruit harvesting force were inversely proportional to the machine velocity but positively proportional to the rotational velocity of the hydraulic motor of the harvesting device. The following machine parameters were required to meet harvesting conditions: a harvesting device output rotational velocity of 120–150 r/min and a machine velocity of 40–50 m/min. A harvesting field test using a self-propelled blueberry harvester was conducted, which showed that the test results were consistent with the software simulation conclusions. When the machine velocity of the harvester and the output rotational velocity of the hydraulic motor were 45 m/min and 130 r/min, respectively, the machine provided optimum harvesting efficiency and fruit quality with the following optimum parameters: a harvesting efficiency of 5.1 kg/min, a raw fruit harvesting rate of 2.9%, and a damaged fruit harvesting rate of 3.6%. This research can lay the preliminary theoretical foundation for the analysis of a blueberry harvesting mechanism, and the research results can provide a theoretical reference for the harvesting of other similar berry shrubs.

Keywords: blueberry harvester; harvesting collision model; analysis of the collision process; harvesting field test; working parameters of harvester (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/11/1900/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/11/1900/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:11:p:1900-:d:970343

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1900-:d:970343