Suppression of Tomato Bacterial Wilt Incited by Ralstonia pseudosolanacearum Using Polyketide Antibiotic-Producing Bacillus spp. Isolated from Rhizospheric Soil
Dinesh Singh (),
Venkatappa Devappa () and
Dhananjay Kumar Yadav
Additional contact information
Dinesh Singh: Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
Venkatappa Devappa: Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, GKVK Post, Benguluru 560065, India
Dhananjay Kumar Yadav: Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
Agriculture, 2022, vol. 12, issue 12, 1-14
Abstract:
Bacillus spp. has the potential to control bacterial and fungal diseases of crops. In vitro study, Bacillus amyloliquefaciens DSBA-11 showed best to inhibit the growth of Ralstonia pseudosolanacearum as compared to Bacillus cereus JHTBS-7, B. pumilus MTCC-7092, B. subtilis DTBS-5 and B. licheniformis DTBL-6.Three primers sets from nucleotide sequences of polyketide antibiotic synthase genes viz. , macrolactin, difficidin and bacillaene of B. amyloliquefaciens FZB42 were designed and standardized protocol for simultaneous detection of polyketide antibiotics-producing strains of Bacillus spp. by multiplex—PCR with products size of 792 bp, 705 bp and 616 bp respectively. All the strains of B. amyloliquefaciens contained three polyketide antibiotic synthase genes, and B. subtilis possessed difficidin and macrolactin, whereas B. cereus JHTBS-7, B. pumilus MTCC-7092 and B. licheniformis DTBL-6 did not contain any polyketide antibiotic genes. By using this technique, polyketide-producing strains of Bacillus spp. were screened within a short period with high accuracy. These polyketide synthase genes were cloned by using a T&A vector to study the role of these genes in producing antibiotics that suppressed the growth of R. pseudosolanacearum under both in vitro and in vivo conditions. Bio-efficacy of cloned products of these genes macrolactin, bacillaene, and difficidin along with parent strain B. amyloliquefaciens DSBA-11 inhibited the growth of R. pseudosolanacearum and formed 1.9 cm 2 , 1.9 cm 2 , 1.7 cm 2 and 3.3 cm 2 inhibition area under in vitro conditions respectively. Minimum bacterial wilt disease intensity (29.3%) with the highest biocontrol efficacy (57.72%) was found in tomato cv. Pusa Ruby (susceptible to wilt disease) was treated with B. amyloliquefaciens DSBA-11 followed by cloned products of difficidin and macrolactin under glasshouse conditions. Hence, the developed multiplex protocol might be helpful for screening polyketide antibiotics producing potential strains of Bacillus spp. from soil which can apply for managing the wilt disease of tomatoes. The polyketide antibiotics produced by bacteria might have a significant role suppression of R. pseudosolanacearum due to the disintegration of cells.
Keywords: antagonistic; bacterial wilt; multiplex PCR; polyketides antibiotics; gene cloning; Bacillus spp.; Ralstoniap seudosolanacearum; tomato (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/12/12/2009/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/12/2009/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:12:p:2009-:d:984189
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().