EconPapers    
Economics at your fingertips  
 

Effectiveness of Common Preprocessing Methods of Time Series for Monitoring Crop Distribution in Kenya

Rui Ni, Xiaohui Zhu, Yuping Lei, Xiaoxin Li, Wenxu Dong, Chuang Zhang, Tuo Chen, David M. Mburu and Chunsheng Hu
Additional contact information
Rui Ni: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
Xiaohui Zhu: Department of Earth and Environment, Boston University, Boston, MA 02215, USA
Yuping Lei: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
Xiaoxin Li: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
Wenxu Dong: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
Chuang Zhang: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
Tuo Chen: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China
David M. Mburu: College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
Chunsheng Hu: Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Hebei Laboratory of Agricultural Water-Saving, Key Laboratory of Agricultural Water Resources, Shijiazhuang 050022, China

Agriculture, 2022, vol. 12, issue 1, 1-22

Abstract: Accurate crop identification and spatial distribution mapping are important for crop production estimation and famine early warning, especially for food-deficit African agricultural countries. By evaluating existing preprocessing methods for classification using satellite image time series (SITS) in Kenya, this study aimed to provide a low-cost method for cultivated land monitoring in sub-Saharan Africa that lacks financial support. SITS were composed of a set of MODIS Vegetation Indices (MOD13Q1) in 2018, and the classification method included the Support Vector Machine (SVM) and Random Forest (RF) classifier. Eight datasets obtained at three levels of preprocessing from MOD13Q1 were used in the classification: (1) raw SITS of vegetation indices (R-NDVI, R-EVI, and R-NDVI + R-EVI); (2) smoothed SITS of vegetation indices (S-NDVI); and (3) vegetation phenological data (P-NDVI, P-EVI, R-NDVI + P-NDVI, and P-NDVI-1). Both SVM and RF classification results showed that the “R-NDVI + R-EVI” dataset achieved the highest performance, while the three pure phenological datasets produced the lowest accuracy. Correlation analysis between variable importance and rainfall time series demonstrated that the vegetation index SITS during rainfall periods showed higher importance in RF classifiers, thus revealing the potential of saving computational costs. Considering the preprocessing cost of SITS and its negative impact on the classification accuracy, we recommend overlaying the original NDVI with the original EVI time series to map the crop distribution in Kenya.

Keywords: Kenya; satellite image time series; MODIS; random forest; support vector machine; cropland; TIMESAT; phenometrics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/1/79/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/1/79/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:1:p:79-:d:720081

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:1:p:79-:d:720081