EconPapers    
Economics at your fingertips  
 

Exogenous Proline Alleviated Low Temperature Stress in Maize Embryos by Optimizing Seed Germination, Inner Proline Metabolism, Respiratory Metabolism and a Hormone Regulation Mechanism

Shiyu Zuo, Jing Li, Wanrong Gu and Shi Wei
Additional contact information
Shiyu Zuo: College of Agriculture, Northeast Agricultural University, Harbin 150030, China
Jing Li: College of Agriculture, Northeast Agricultural University, Harbin 150030, China
Wanrong Gu: College of Agriculture, Northeast Agricultural University, Harbin 150030, China
Shi Wei: College of Agriculture, Northeast Agricultural University, Harbin 150030, China

Agriculture, 2022, vol. 12, issue 4, 1-32

Abstract: Proline (Pro) is not only an important osmotic adjustment substance, but it also plays an important role in regulating plant abiotic stress resistance. The maize varieties, Xinxin 2 (low temperature insensitive) and Damin 3307 (low temperature sensitive), were chosen as materials, setting a normal temperature for germination (22 °C/10 °C, 9d), low temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with a proline (15 mmol·L −1 ) soaking treatment, to reveal the seed germination and regulation mechanism in maize embryos. The results showed that proline significantly improved the germination potential, germination rate, germination index and vigor index of seeds under low temperature stress, increasing the length of the coleoptile and radicle, increasing the dry and fresh weight of young buds (coleoptile + radicle), and increasing the activity of α-amylase. Proline enhanced the activities of Δ1-pyrroline-5-carboxylic acid synthetase (P5CS) and ornithine aminotransferase (OAT) in maize embryos under low temperature stress, enhanced the proline synthesis pathways, and further enhanced proline accumulation. Proline induced the activity of proline dehydrogenase (ProDH) in the early stage of low temperature stress and stress relief. Under low temperature stress, the activities of hexokinase (HXK), phosphofructokinase (PFK), pyruvate kinase (PK), isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) and glucose-6-phosphate dehydrogenase (G-6-PDH and 6-P-GDH) in maize embryos were decreased, resulting in a decrease in the glycolysis (EMP) pathway, tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP). Proline alleviated the inhibition of key enzyme activities of the EMP pathway, TCA cycle and PPP of maize embryos under low temperature stress, increased the activities of cytochrome oxidase (COX) and alternative oxidase (AOX), increased the ATP content, alleviated the inhibition of low temperature stress on main cytochrome pathway activity (ρV cyt ), while further increasing the total respiratory activity (V t ) and the actual operational activity of the alternative pathway (ρV alt ) during seed germination at the initial stage of low temperature stress, as well as improving the inhibition of the V t and ρV alt in the middle and late stages of low temperature stress. Under low temperature stress, the content of abscisic acid (ABA) increased significantly, while gibberellin (GA), auxin (IAA) and zeatin nucleoside (ZR) decreased significantly. Proline alleviated the decrease in IAA, ZR and GA contents in maize embryos under low temperature stress, reduced the increase in the ABA content, and reduced the inhibition of low temperature on seed germination.

Keywords: proline application; maize embryos; low temperature resistance; physiological and biochemical mechanism (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/4/548/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/4/548/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:4:p:548-:d:791825

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:548-:d:791825