Design of and Experiments with an Automatic Cuttage Device for an Arch Shed Pillar with Force Feedback
Kezhou Chen,
Xing Liu,
Shiteng Jin,
Longfei Li,
Xin He,
Tao Wang,
Guopeng Mi,
Yinggang Shi and
Wei Li
Additional contact information
Kezhou Chen: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Xing Liu: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Shiteng Jin: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Longfei Li: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Xin He: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Tao Wang: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Guopeng Mi: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Yinggang Shi: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Wei Li: College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
Agriculture, 2022, vol. 12, issue 6, 1-19
Abstract:
In order to realize the automatic cutting of arch shed pillars, an automatic cuttage device for an arch shed pillar with force feedback was designed in this study. First, the wind resistance of the arch shed was simulated and analyzed using ANSYS, and the cuttage depth of the arch shed pillar was determined. According to the environment for the cuttage operation of the arch shed pillar and the agronomic requirements, such as the arch shed span, arch shed height, and cuttage depth, the function, structure, and basic design parameters of the arch shed automatic cuttage device were determined. Then, to reduce the damage rate of the pillar and achieve equal-depth cuttage, a force feedback system for the actuator of the cuttage device was constructed to estimate the cuttage resistance and depth in real time. To reduce the impact of the starting and stopping of each motor in the actuator, trajectory planning of the execution end in the pillar transfer stage was performed in the Cartesian coordinate system. The motion law of portal trajectory based on the Láme curve was analyzed, and MATLAB simulations were used to solve the relevant motion parameters. In addition, the modality of key components of the cuttage device was simulated and analyzed by using the SOLIDWORKS simulation plug-in. Finally, the experimental prototype was constructed according to the simulation results. The simulation and field cuttage experiments showed that the cuttage device produced equal-depth cuttage for the arch shed pillar, where the depth of the arch shed pillar was 10 cm, the average cuttage time of a single pillar was 6.2 s, and the error of the cuttage depth was ±0.5 cm in wet soil. The operation of the device was stable, as evidenced by the smooth and mutation-free operation trajectory and speed curve of the execution end. The results of the modal experiment suggest that resonance would not occur during the operation for resonance frequencies between 303 Hz and 565 Hz. This arch shed pillar automatic cuttage device has an optimal operation performance and meets the agronomic requirements of arch shed pillar cuttage.
Keywords: arch shed; automatic cuttage; force feedback; simulation design; trajectory planning (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/12/6/875/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/6/875/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:6:p:875-:d:841566
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().