EconPapers    
Economics at your fingertips  
 

Modification of Cuticular Wax Composition and Biosynthesis by Epichloë gansuensis in Achnatherum inebrians at Different Growing Periods

Zhenrui Zhao, Mei Tian, Peng Zeng, Michael J. Christensen, Mingzhu Kou, Zhibiao Nan and Xingxu Zhang
Additional contact information
Zhenrui Zhao: State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Mei Tian: Institute of Horticulture, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
Peng Zeng: State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Michael J. Christensen: Grasslands Research Centre, Private Bag 11-008, Palmerston North 4442, New Zealand
Mingzhu Kou: Xining Center of Natural Resources Comprehensive Survey, CGS (China Geological Survey), Xining 810000, China
Zhibiao Nan: State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Xingxu Zhang: State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

Agriculture, 2022, vol. 12, issue 8, 1-12

Abstract: Cuticular wax plays a critical role as a plant protectant against various environmental stresses. We predicted that the presence of the mutualistic fungal endophyte Epichloë gansuensis in Achnatherum inebrians would change both the composition of leaf cuticular wax as plants aged during the growing season and the gene expression levels associated with the wax biosynthesis pathway. Endophyte-infected (EI) and endophyte-free (EF) A. inebrians plants were established for a four-month pot experiment. In agreement with our prediction, the presence of E. gansuensis can change the composition of leaf cuticular wax at different growing periods, particularly the proportion of esters, fatty acids and hydrocarbons. The proportion of fatty acids in EI plants was lower than that in EF plants. The proportion of hydrocarbons increased and esters decreased as plants grew. Furthermore, we found 11 DEGs coding for proteins involved in cuticular wax biosynthesis, including FabF, FAB2, ECR, FAR, CER1, ABCB1 and SEC61A. The present study highlights the significant contribution of E. gansuensis to leaf cuticular wax composition and biosynthesis in A. inebrians plants.

Keywords: Epichloë gansuensis; Achnatherum inebrians; growing periods; cuticular wax; GC–MS; transcriptome analysis (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/12/8/1154/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/8/1154/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:8:p:1154-:d:880220

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1154-:d:880220